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Light scattering by ensembles of independently scattering, randomly oriented, axially symmetric particles is
considered. The elements of the scattering matrices are expanded in (combinations of) generalized spherical
functions; this is advantageous in computations of both single and multiple light scattering. Waterman’s T-matrix
approach is used to develop a rigorous analytical method to compute the corresponding expansion coefficients. The
main advantage of this method is that the expansion coefficients are expressed directly in some basic quantities that
depend on only the shape, morphology, and composition of the scattering axially symmetric particle; these
quantities are the elements of the T matrix calculated with respect to the coordinate system with the 2 axis along the
axis of particle symmetry. Thus the expansion coefficients are calculated without computing beforehand the
elements of the scattering matrix for a large set of particle orientations and scattering angles, which minimizes the
numerical calculations. Like the T-matrix approach itself, the method can be used in computations for homoge-
neous and composite isotropic particles of sizes not too large compared with a wavelength. Computational aspects
of the method are discussed in detail, and some illustrative numerical results are reported for randomly oriented
homogeneous dielectric spheroids and Chebyshev particles. Results of timing tests are presented; it is found that
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the method described is much faster than the commonly used method of numerical angle integrations.

1. INTRODUCTION

A medium frequently encountered in light scattering is an
ensemble of independently scattering nonspherical particles
in which all possible orientations of a single particle are
equally probable. In theoretical calculations of single and
multiple light scattering by such media, a useful and effi-
cient approach is to expand the elements of the scattering
matrix in a suitable complete set of orthogonal functions,
namely, in generalized spherical functions.1-5 There are at
least two reasons in favor of this approach. First, if the
corresponding expansion coefficients are known, then the
elements of the scattering matrix can be accurately evaluat-
ed for a large set of scattering angles with a minimum ex-
pense of computer time. Thus extensive light-scattering
tables become unnecessary, and no interpolation is required
for calculation of the scattering matrix in intermediate
points. Second, the expansion coefficients easily enable one
to calculate Fourier components of the phase matrix appear-
ing in the equation of transfer of polarized light in plane-
parallel isotropic media. As a result, both theoretical and
numerical solutions of the radiative transfer equation are
greatly simplified.6-23

Two efficient analytical methods for calculating the ex-
pansion coefficients for homogeneous spherical particles
have been proposed by Domke?4 and Bugaenko? (note that
equations analogous to those of Domke have been indepen-
dently derived by Oguchil®). They have taken into account
that each term in the Mie series is a product of one of the
functions 7, and 7,, which depend only on the scattering
angle, and one of the Mie coefficients a, and b,, which
depend only on the size parameter and refractive index of
the scattering particle. By using this particular structure of
the Mie series, Domke and Bugaenko have analytically ex-
pressed the expansion coefficients directly in the Mie coeffi-

cients. Thus in both methods the expansion coefficients are
calculated without computing preliminarily the elements of
the scattering matrix for a representative set of scattering
angles, which minimizes the numerical work. Moreover,
these methods are numerically accurate in the following
sense: if a computational parameter ny., has been chosen,
the Mie coefficients a, and b, for n < n,, are assumed to be
determined precisely, and the coefficients for n > np,, are
assumed to vanish, then the accuracy of computing the cor-
responding expansion coefficients is limited only by round-
off errors and does not depend on any additional computa-
tional parameter (e.g., the number of division points of a
quadrature formula used in the method of numerical angle
integrations?). Recently Domke’s method was reconsid-
ered and improved by de Rooij and van der Stap,26 whereas
Mishchenko?” has pointed out that this method can be ap-
plied to arbitrary radially inhomogeneous spherical scat-
terers. Note that the same is true for Bugaenko’s method as
well.

The purpose of the present paper is to consider a more
general type of scattering, namely, light scattering by ran-
domly oriented nonspherical particles of revolution. As a
mathematical and numerical basis, we use Waterman’s T-
matrix approach,?8-32 which seems to be the most powerful
tool for solving light-scattering problems for homogeneous
and composite axially symmetric particles of sizes not too
large compared with a wavelength.33-4! I demonstrate that,
like the Mie theory, the T-matrix approach enables one to
solve analytically the problem of calculating the expansion
coefficients relevant to the scattering matrices averaged over
the uniform orientation distribution of axially symmetric
scatterers. More specifically, I show that, instead of com-
puting numerically the average scattering properties of a
particle ensemble by averaging results for scattering by a
single particle with continuously varying orientation, one
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can express the expansion coefficients analytically in some
basic quantities that depend only on the size, morphology,
and composition of the scattering particle and do not depend
on any angular variable. These basic quantities are the
elements of the T-matrix of the axially symmetric scatterer
calculated with respect to the coordinate system with the z
axis along the axis of symmetry.

The plan of this paper is as follows. In Section 2, I briefly
recapitulate basic definitions and equations relevant to the
scattering of light by a single nonspherical particle and by an
ensemble of randomly oriented particles. Two sets of
Stokes parameters are used to describe the state of polariza-
tion of light, and the corresponding scattering matrices are
expanded in (combinations of) generalized spherical func-
tions. A review of the T-matrix formulas is given in Section
3. Section 4 is a crucial part of the paper and contains
derivations of simple analytical expressions that can be used
for efficient numerical computations of the expansion coeffi-
cients and the elements of the scattering matrices of ensem-
bles of randomly oriented particles of revolution. InSection
5 I discuss computational aspects of the proposed method
and present some illustrative numerical results for randomly
oriented homogeneous dielectric spheroids and Chebyshev
particles.3¢ The principal results of the paper are discussed
and summarized in Section 6.

2. SCATTERING MATRIX

To describe the scattering of polarized light in some scatter-
ing medium, we use a right-handed Cartesian-coordinate
system B with orientation fixed in space, having its origin
inside a single scattering particle (Subsection 2.A) or inside a
small volume element (Subsection 2.D). In what follows,
this coordinate system will be referred to as the laboratory
reference frame.

The direction of a beam of light is specified by a unit
vector A = (6, ¢), where §(0 < 0 < 7) is a polar angle measured
from the positive z axis and ¢(0 < ¢ < 2x) is an azimuth
angle measured from the positive x axis in the clockwise
sense, when one is looking in the direction of the positive z
axis.

6 and ¢ components of the electric field E are denoted by
subscripts 1 and 2, respectively. Thus the component E; =
E;0 is along the meridional plane (plane through the beam
and the z axis), whereas the component E; = Ey¢ is perpen-
dicular to this plane; here, 8 and & are the corresponding unit
vectors (note that A = 8 X ).

A. Amplitude Scattering Matrix
Consider a plane electromagnetic wave

E(r) = (E,'0, + E,'3)exp(ikhx), (2.1)

incident upon a nonspherical particle; here, & = 2x/A, and A
is a free-space wavelength. The time factor exp(—iwt) is
assumed and is suppressed throughout the paper. In the
far-field region (kr > 1), the scattered wave becomes spheri-
cal and is given by (cf. Refs. 42 and 43)

E'(r) = E/°(r, hs)és + E)(r, A,)¢s f,=r/r,

E¥(r)-r=0,
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BN expikn/r St Ef
E = exp(ikr)/r S(f; f;) Bl (2.2)

where S is a (2 X 2) amplitude scattering matrix. This
matrix depends on (besides f; and #;) the size, morphology,
and composition of the scattering particle as well as on the
particle’s orientation with respect to the laboratory refer-
ence frame B.

Circular components of the electric field are defined by*

E. ] _ 1 i[E]_ E, +iE,
[E_l] =142 [1 —i]l:Ez] = 1Az [El - iEz]' @3)

We easily verify that the corresponding amplitude scatter-
ing matrix C is given by

C C,i
C = +1+1 +1-1
Cinn Coyny
_1 811 —iS1p + Sy + Sy Sy +iS) +iS, — Sy
2 Sn - isl? - iSm - 322 Su + iSlZ - iS2l + Szz '
(24)
where the arguments (7,; f;) are omitted for brevity.
B. Stokes Parameters
In this paper we use two sets of Stokes parameters of the

incident plane wave and the scattered spherical wave de-
fined as*

I=E.E* + E,E,*, (2.5a)
Q=E.E* - E,E,*, (2.5b)
U= -E,E,* — E,E*, (2.5¢)
V =i(E,E\* — E\E,*) (2.5d)
and
I,=E_E..* = '%(Q+il), (2.6a)
Iy=E,E. *=%I+V), (2.6b)
Io=E_E_*=Y%I-V), (2.6¢)

I_,=E_E_*=Y%@Q-:iU), (2.6d)
where the asterisk denotes the complex-conjugate value.
The corresponding Stokes vectors (or intensity vectors) IS
and IC are defined as (4 X 1) columns having the Stokes
parameters as their components as follows:

I
r=0,qU =2 @)
1%
I,
C T I,
I =(I2’107I—0y1—2) = I ] (2-8)
-0
I,

where T denotes matrix transposition.
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C. Mueller Matrix of a Single Particle

Transformation of the Stokes parameters of the incident
plane wave into those of the scattered spherical wave owing
to light scattering by a single particle is given by (cf. Refs. 42
and 43)

Iss(ﬂs) = (1/r Z)ZS(ﬂs; ﬁi)lis(ﬁi):
Isc(ﬁs) = (1/r 2)zc(ﬁs; ﬁi)IiC(ﬁi),

(2.9a)
(2.9b)

where ZS and ZC are (4 X 4) Mueller matrices (or phase
matrices). The elements of these matrices can easily be
expressed in the elements of the amplitude scattering matri-
ces. By using Egs. (2.6) and (2.9b), we derive
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1 27 4
(@50 0)) = o5 [ “da | a8
87* Jo 0

27
X sin 8 j dy Z5%(ng; f; afy), (2.15)
0

where ZS€(f; fi;; afy) are the Mueller matrices of a particle
with orientation (afvy).

As follows from Eqgs. (2.9a) and (2.9b), the Mueller matri-
ces ZS and ZC relate the Stokes parameters of the incident
and scattered radiation defined with respect to the corre-
sponding meridional planes. Unlike the Mueller matrices,
the scattering matrices FS and FC relate Stokes parameters

*
C_141C11

*
Ci141C11

* ’
C_141C11

*
Ci141C-11

p,q=2,0,—0,-2. (2.10)

C_1-1Ch1* CoitiCir* CoiCiiy™*
7€ =|Z.°| = Ci1-1Chit* Ci141iCiint* Ci1iCiir™*
pa C_1-1Coit* CoiiCopy* CiCoyy*
Ci1-1C1t* CoiCoiyy* CiyaCoyy*
Also we have!
75 = AT1ZCA, (2.11)
where
01 0 0 1 1 o0
1]1 0 O 1 _ 1 0 0 1
A=_.— 1
211 0 0 -1} A - 0 0 if
01 - 0 0 1 -1 0
(2.12)

D. Mueller Matrices and Scattering Matrices of
Ensembles of Randomly Oriented Particles

We now consider a small volume element containing N inde-
pendently scattering particles. In this case the Stokes vec-
tors of the waves scattered by the individual particles should
be added to obtain the Stokes vector of the radiation scat-
tered by the entire volume element.** Thus we have

Z5C(a,; h) = N(Z5C(hg; 1)), (2.13)
where the ensemble averaged Mueller matrices (ZS) and

(ZC) are given by

N
(B 1)) = 5 > TSR ), (214)
n=1

where n numbers the particles.

Now let the volume element be composed of identical,
randomly oriented particles. In order to evaluate the en-
semble averaged Mueller matrices, we find that it is conve-
nient to introduce & special right-handed coordinate system
A by attaching it firmly to the scattering particle. This
coordinate system will be referred to as the natural reference
frame (or body frame) of the scatterer. Orientation of each
particle in the ensemble with respect to the laboratory refer-
ence frame B we define by the Eulerian angles of rotation «,
B, and v that transform the coordinate system B into the
coordinate system A.4> In that way, we can rewrite Eq.
(2.14) as follows:

defined with respect to the scattering plane (i.e., the plane
through the vectors #; and A;). Since for media consisting of
randomly oriented particles the scattering matrices depend
only on the scattering angle 8 = cos~1(f; - #;),%243 we define

F5(6) = —C‘-‘L (Z5°(, 0, 0,0)), 2.16)

sca

where the scattering cross section Cj, is defined ag?43

C,. = ] d0(Z,,5(6, 0; 0, 0)). 2.17)
4

The factor 47/Cy, in Eq. (2.16) is chosen such that the

element (1, 1) of the scattering matrix FS (the so-called

phase function) satisfies the normalization condition

1 J dOF,S0) = 1.
4 4

™

(2.18)

E. Expansion of the Elements of the Scattering Matrices
in Generalized Spherical Functions

In what follows, we shall assume that the scattering volume
element consists of randomly oriented particles having a
plane of symmetry and (or) particles and their mirror parti-
cles in equal numbers with random orientation. In this case
the scattering matrix FC has the form14

C — C
F* = “qu "
a2 + a3 bl + ib2 bl - ib2 a2 - (13
1 b+ib, a;+a, a,—a, b —ib,
2 bl - ibz al - a4 al + a4 bl + ib2 !
a,—a; b, —ib, b, +ib, ay,+ag

p,g =2,0,-0,-2, (2.19)

where ay, ay, as, a4, by, and b, are some real functions of the
scattering angle 6. As was mentioned above, a useful set of
functions for making series expansions of the elements of
this matrix is provided by so-called generalized spherical
functions Ppq®(cos 6), which have been defined and exten-
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sively studied by Gelfand et al.%6 (the principal properties of
these functions are summarized in Appendix A). Following
Refs. 1, 2, and 4, we write

C -
qu ©) = Z gpq’qu’(cos 9),
s=max(pl, lq)

p,q= 2, 0, "0, "2, (2.20)
where the expansion coefficients are given by [cf. Eq. (A9)]

s_25+1
qu 2

j d(cos 6)F,,C(O)P,*(cos 6). 2.21)

Note that for P,.*(cos 8) no distinction is made between p, g
=0orp, q = —0. By using Egs. (2.19), (2.21), and (A8), we
can easily derive the following symmetry relations!

=g, (2.22)

8pp'» 8p-p = real, 820" = [82-0°1*- (2.23)
Returning to the real-valued polarization parameters (I,
Q, U, V), we have#243
a, b, 0 0
b a 0 O
0 0 a3 b
0 0 -by a

- s
8pg = &gp

(2.24)

FS=

In this case the expansions [Eq. (2.20)] are replaced by the
expansions3411:15,18

a,(0) = Z a,"P,,*(cos 6), (2.25)
s=0
a,(0) + ay(0) = Z (a," + a5*)Pyy*(cos 0), (2.26)
§=2
ay(6) — as(6) = z (a5' — a;°)P,_,*(cos 6), (2.27)
8=2
a,0) = Z a Py’ (cos ), (2.28)
8=0
b,(0) = Z b,*Pyy*(cos 6), (2.29)
8=2
by(6) = z b,*Py,*(cos 0), (2.30)
8=2
where
a;" = goo’ + 800" (2.31)
=g’ + 852" (2.32)
= goo° — 82-2", (2.33)
as = 8o’ — 8o-0" (2.34)
b," = 2 Regy,’, (2.35)
b28 =2 Img02’. (2.36)

Note that Eq. (2.25) is the well-known expansion of the
phase function in Legendre polynomials*™4? [cf. Eq. (A4)].
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From the normalization condition [Eq. (2.18)], we have the
identity

al=1 (2.37)

3. T-MATRIX ANSATZ

A. Amplitude Scattering Matrix

For calculating the elements of the amplitude scattering
matrix S(A,; A;) for a single nonspherical particle with a fixed
orientation with respect to the laboratory reference frame,
we use the T-matrix approach.?? Thus we expand the inci-
dent and scattered fields in vector spherical waves M, and
N, as follows®0:

E@)=> > [an, ReMp,(kr) + by, Rg Ny, (kr)],
n=1 m=—n
8.1)
E'(r) = Z Z [PrM,(BE) + @ N RD)],  F> g,
n=1 m=-n
(3.2)
where
M, (kr) = (=1)"d hD(kr)C,,,(6)exp(ime), (3.3)

”"}:1’ RO Rr)P,,,(6)

N, (kr) = (-1)"d {

+— [krhfp(kr)]'B,,,,,(o)}exp(im), (3.4)

B,.(0) = d0 do,,,"(()) + v’ d0m"(0), (3.5)

Crnl®) = 0 22y, 6) 5’0 do,"(0), (3.6)

Pmn(a) = fdomn(e), (3.7)
[ 2n+1 T2

dn = [47rn(n + 1)] ’ (3.8)

and ry is the radius of a circumscribing sphere of the scatter-
ing particle. Wigner functions d,,,,"*(6) are expressed in the
generalized spherical functions as follows:

dpp™(0) = i™"™P,,.."(cos 6). (3.9)

The expressions for the functions Rg M., and Rg N, can
be obtained from Eqgs. (3.3) and (3.4) by replacing spherical
Hankel functions k ("’ by spherical Bessel functions j,.

From the linearity of Maxwell’s equations and boundary
conditions, the relation between the scattered field coeffi-
cients and exciting field coefficients is linear and is given by
a transition matrix (or 7' matrix) T as follows:

z z ( mnmn Cmn + Tmnm’n’mbm'n')'

n’=1 m'=-n’

(3.10)

9mn = Z Z (Tmnm’n'2lam ‘n’ + Tmnm ‘n’ bm’n’)' (311)

n’'=1 m'=-n’

The elements of the T matrix do not depend on the direc-
tions of propagation and the states of polarization of the
incident and scattered fields. They depend only on the size,
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morphology, and composition of the scattering particle as
well as on its orientation with respect to the laboratory
reference frame.

For a plane incident wave

Ei(r) = E, exp(ikh;r), (3.12)
the expansion coefficients a,, and b, are*>%0

a,, = 4n(=1)"i"d,C,..*(6,)E; exp(—ime)), (3.13)

b, = 4x(—-1)"i""'d,B,,.*(6, E; exp(—imyp)). (3.14)

By making use of the large argument approximation for
spherical Henkel functions,

(—=i)"*lexp(ikr)
kr ’

and taking into account Eqs. (2.2), (3.2)-(3.4), and (3.10)-

(8.14), we obtain an expression of the elements of the ampli-

tude scattering matrix S in terms of the T-matrix elements.
In dyadic notation we have2%:50

S(h,; Ay = % D

nmn’'m’

h{O(kr) =~ kr » n?, (3.15)

rY(—1)mtmd, d,, expli(me, — m'e;)]

X {[Tmnm’n’ucmn(es) + Tmnm’n’zlian(os)]Cm’n'*(ei)
+ [ mnm’n’ 12Cmn(os) + Tmnm'n'22ian(as)]Bm'n’* (01)/"} (3'16)

B. Rotations of the Coordinate System

Let 'T and 2T be the T matrices of a particle calculated with
respect to arbitrary coordinate systems 1 and 2, respectively,
and let «, 8, and v be the Eulerian angles of rotation that
transform the coordinate system 2 into the coordinate sys-
tem 1. By using the expansion45:50

n
Mpn(kr, 61,000 = " Dy (@BY)Myn(kr, 03, 05),

m'=—n
(3.17)
where

D,..,,"(aBy) = exp(—im’a)d,,,,"(B)exp(—im~) (3.18)

are Wigner D functions, and similar expressions for the func-
tions N,,,, Rg M., and Rg N, and taking into account Eqs.
(3.1), (3.2), (3.10), and (3.11), we derive®0:5!

n n
2 i — —1n
Tmnm'n’u = Z Z szm’ In (afy)

m,=—n my=-n’
XT, Dy "@By),  §,j=1,2, (3.19)

where
Dy " (@BY) = Dy (@BY)]* = D,y ™ (—=y = B = @)
(3.20)

It is worthwhile to note that the sums of the diagonal
elements of the matrices T¥(i, j = 1, 2) are invariant with
respect to the rotations of the coordinate system. By using
Eqgs. (3.18) and (3.19) and taking into account that*®

> A, B B) = by (3.21)

m=-=n
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where 6, m, is the Kronecker delta, we easily derive

Z Z mnmn’ i Z mnmn» iLj=1,2
n=1 m=—

n=1 m=-n
(3.22)
This property is in agreement with the formula®2
ext R Z 2 ( mnmn11 + Tmnmn ); (323)

n=1 m=-n

where C.y is the extinction cross section averaged over an
ensemble of randomly oriented identical particles and T is
the T matrix of a single particle calculated with respect to an
arbitrarily chosen reference frame.

C. Axially Symmetric Scatterers

In principle, the T-matrix approach can be applied to an
isotropic particle with any (even rather complicated) shape
and internal structure (see, e.g., Ref. 53, in which theory and
numerical results for general ellipsoids are reported). Nev-
ertheless, both mathematics and computer calculations be-
come much simpler if the scattering particle (homogeneous
or composite) is axially symmetric.385455 Therefore, in
what follows, we shall assume that the shape and the refrac-
tive index m, of the scattering particle in the natural refer-
ence frame A can be specified by equations

r(9, ¢) = r(0), (3.24)

m.(r, 0, ¢) = m.(r, 6). (3.25)
In other words, the z axis of the natural reference frame is
chosen to be the axis of particle symmetry.

Let T(A) be the T'matrix of an axially symmetric scatterer
calculated with respect to its natural reference frame and let
the natural reference frame be coincident with the laborato-
ry reference frame. Then the amplitude scattering matrix S
should possess the properties4243

S(ﬁ’s; ﬁz) = S(os’ 0, 05— ‘Pi); (3.26)
S(ﬂs, oi' ¢s - <loi) = Qs(as’ 0;" ‘Pi - ‘Ps)Qy (3-27)

where Q = diag(1, —1). As aresult, by using Eq. (3.16) and
the symmetry relation [cf. Egs. (3.9) and (A8)]

™0 = (=1)™™d__ "), (3.28)
we have
Tmnm’n'ij(A) = amm’Tmnn’ij(A)’ (329)

A(4) = (-1, (A). (3.30)

mnn —mnn

4. EXPANSION OF THE ELEMENTS OF THE
SCATTERING MATRICES OF ENSEMBLES OF
RANDOMLY ORIENTED AXIALLY
SYMMETRIC PARTICLES IN GENERALIZED
SPHERICAL FUNCTIONS

Consider an axially symmetric particle having orientation
(aBy) with respect to the laboratory reference frame B. We
denote by T(afy) the T matrix of this particle calculated
with respect to the laboratory frame and by C(f; fi; afy)
and S(As; fi; aBy) the corresponding amplitude scattering
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matrices. By using Egs. (2.4), (3.5), (3.6), and (3.16) and
taking into account the formulas*

_Lo don"Og=o = dmsrhln(n + DIV, (4.1
L 4Ol = mbprthln(n + DI, (4.2

do,,,"(()) Ln(n + D1Y?[d,,,"(0) + d_1,,"(0)], (4.3)

(—;*; don"(®) = Yyl + D]y, ") = d_1p" O], (44)

we find that
® ® n
Corn16,0;0,0:087) = > > > tnd_1"6)
n=1n'=1 m=-n
X [Tmn—ln’ll(aﬂ‘y) - T,n,,_l,,'lz(aﬂ‘y)
- Tmn—ln’ZI(aﬂ'Y) + T,,,,,_ln/n(aﬂ'y)], (45)

C+1—1 = Z tmnn’ d—lmn[Tmnln + Tmnln

nn’'m

- Tmnln’21 - Tmnln’22]’ (4.6)

T ,12

mn—1n

1
C—1+1 = Z J— dlmn[Tmn—ln’l -

nn’'m

+ Tmn— - Tmn—ln'22]! (47)

= n 11 12
-1- Z J— dlm [Tmnln' + Tmnln’

+ Tronin?: + Tronin™),  (4.8)
where
t = —21;1 —nmlo1)mH[2n + 1)@+ DIY2 (49)

Note that all the arguments in Eqs. (4.6)-(4.8) have been
omitted for brevity. Then, we use Egs. (3.19), (3.28)-(3.30),
and (4.5)-(4.9) together with the formulas*’

n+n’

e
nym’+m,

n,m+mlc L
nm’ n'm,

dmm’n(o)dm,m,’n,(o) =

n,=ln—n’|

Cnm n'm,
X Ay b, (), (4.10)
2n +1\12 —m,
C’h"h nzmznm = (_1)n1+m,(___) Cn,m, n_mn_ m_,

2n, +1
(4.11)

= (=1)"C nem (4.12)

ny=m; n,—m,

c

nym; n,m,

to derive

Cy141(6,0;0,0; aBy) = Z Z

n=1m=-n n,=lm~1|

X dy_ o™ (B)exp[—ia(l = m)|Bp,, |, (4.13)

fnn,d—l—m"(o)
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Ci1e1= ) fnd-1n" 1o expl=ic(m = DBy, 7,

nmn,

(4.14)

Coin= Z fnnld—lmndm—onl exp[—ia(l - m)]annl21

nmn,

(4.15)

Coia= Z fnnldl—mndl—mon] exp[—ia(m — 1)]annllr

nmn,

(4.16)
where fu,, = (2n + 1)V2(2n; + 1)/(2ik),
n+n,
annlj = Cnm n,1-m llAnn 'n, J =12,
n’=max(1, In—n,))
(4.17)
on M,
i l n’m
Ann’n,’ e L2 Cnml n,0 : Tmlnn
@n’ +1)! M,Z-M,
M, = min(n, n’), (4.18)
T = Tmnn u(A) + Tmnn IZ(A) +T, mnn’ ZI(A) +T mnn’ 22(A)’
(4.19)
Tmnn’2 = mnn ll(A) +T mnn’ 12(A) mnn ZI(A) mnn 2Z(A)-

(4.20)

Here, Tnnn"/(A) are elements of the T matrix of the axially
symmetric scatterer calculated with respect to its natural
reference frame A (cf. Subsection 3.C) and Cy m, n,m,™" are
Clebsch-Gordan coefficients related to Wigner 3j symbols

by
— (_1yutntm 1/2 n, np n
nm "2’"2nm =D+ D [ml my —'m]'

(4.21)

Finally, by using Egs. (2.10), (2.15), (2.16), (2.20), (3.9),
(3.28), and (4.10)-(4.16) together with the orthogonality re-
lation [cf. Egs. (3.9) and (A9)]

fo " dB sin B, "(B)d ™ (B) = 5

c

2

R 4.22
" on+1 (4.22)

we obtain the following formulas that can be used in practi-
cal computer calculations:

© n+s M
gOOs = Z z hsnhcnl s0 Z Cnm 30an mnnoo’
n=1 A=max(1, In—s|) m=-M
(4.23)
&' = Z hynp(=1)"5C o Z Com 50" D™,
m=-M
(4.24)
mmal
g22a = Z hsnﬂcn—l .92"ll Z Cn—m san_m Dmnhzzv (4'25)
nh m=m,

‘min
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Mumax

g2—2‘s = Z hsnﬁ(—l)n+h+sc -1 sZM Z Cn—msZ mnﬂz_z’
"-ﬁ m= mmm
(4.26)

g02s == Z hsnncnl sOﬂ1 Z cn—m 32h2—m Dmnr‘zoz’ (427)

nh m=Mpin

where
1/2

g = ZE DT (2" hs 1) : (4.28)

kC,, \2p+1
Dmnﬁoo = Z (2n'1 + I)anml(Bmhml)*’ (4'29)

n,= m—1|
Dmnho_o = Z (2"‘1 + I)ann,2(Bmﬁn12)*’ (4.30)
Dmnh22 = Z (2n1 + I)annll(B2—mﬁnll)*, (431)
l)mrmz_2 = Z (2n1 + l)annlz(B2—mfm12)*' (432)
l)mnﬁo2 = Z (2n1 + I)annlz(BZ—mhml)*' (433)

n

M = min(n, A), Mpin = max(—n, —A + 2), and Muy.x = min(n,
A+ 2). An expression for C;., can be derived by using Eqgs.
(2.31), (2.37), (3.30), (4.11), (4.17)—(4.20), (4.23), (4.24), and
(4.28)-(4.30) together with the formulas*®

Cn,ml 6nn,6mm, (4'34)
z Cn,m1 n2m2nmcn,m, n2m2nlm’ = 6,",/5”””/, (435)
mymy

Z Conumy mmy ™ Cony mgmy™ = B By (4.36)

After some manipulations, we get5¢

® o min(n,n’)
Csca i—ﬂ. Z z= ”; uzlz (2 - amO)l mnn’ lJ(A)IZ.
(4.37)

It is worthwhile to note that, for a spherical particle with
spherically symmetric internal structure,

Tmrm’u(A) = _6nn’bm (438)
Tmnn'zz(A) = _6nn’am (4.39)
mnn (A) mnn'm(A) = (4-40)

where a, and b, are the Mie coefficients, if the particle is
homogeneous, and their analogs, if the particle is radially
inhomogeneous. In this case our expressions (4.23)-(4.27)
can easily be reduced to those derived earlier in Refs. 10, 24,
26, and 27.
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5. PRACTICAL CONSIDERATIONS AND
NUMERICAL RESULTS

A. Computational Aspects

There are eight major numerical steps involved in the com-
putation of the expansion coefficients a5, ..., b’ and the
elements of the scattering matrix FS(6):

(1) Computation of the T matrix of an axially symmetric
(homogeneous or composite) scatterer with respect to its
natural reference frame with the z axis along the axis of
symmetry [i.e., the matrix T(4)].

(2) Computation of the quantities T',,.7, j = 1, 2 [Eqgs.
(4.19) and (4.20)].

(3) Computation of the quantities A,/ [Eq. (4.18)].

(4) Computation of the quantities Bnyn,/ [Eq. (4.17)].

(5) Computation of the quantities D,,,3?9 [Eqs. (4.29)-
(4.33)].

(6) Computation of the expansion coefficients gp,° [Egs.
(4.23)-(4.27)].

(7) Computation of the expansion coefficients a5, ...,
bo* [Eqgs. (2.31)-(2.36)].

(8) Computation of the elements of the scattering matrix
F5(0) [Egs. (2.25)(2.30)].

Note that step (1) is the first and the necessary step in any
computations based on the T-matrix approach.

Formulas for computing the matrix T(A) for homoge-
neous axially symmetric particles are given, e.g., by Tsang et
al.%®® The corresponding computational aspects are exten-
sively discussed by Wiscombe and Mugnai®® [note, however,
that these authors used another set of vector spherical wave
functions in the expansions (3.1) and (3.2)]. Computation
of the T matrix for composite particles is considered in Refs.
33, 3941, and 57.

Formulas for computing the Clebsch-Gordan coefficients,
appearing in Eqgs. (4.17), (4.18), and (4.23)-(4.27), are given
in Appendix B. Formulas for computing the generalized
spherical functions, appearing in Eqs. (2.25)-(2.30), are giv-
en in Appendix A.

B. Illustrative Numerical Results and Timing Tests

In this subsection we present results of numerical computa-
tions for randomly oriented, identical homogeneous dielec-
tric spheroids and Chebyshev particles. The surface of a
spheroid in the natural coordinate system A is governed by
the equation

r8, ¢) = a(sin?0 + d%cos260)"12,  d = a/b, (5.1)

where b is the rotational semiaxis and a is the horizontal
semiaxis of the spheroid. The surface of a Chebyshev parti-
cle is governed by the equation34

r(8, ¢) = ry(1 + E cos né). (5.2)

Computations in Tables 1-5 are reported for two models;

Model 1%8: Prolate spheroids with a refractive index m, =
1.5+ 0.1i, a/b = 1/2, and a size parameter kb = 5.5.

Model 238: Chebyshev particles with m, = 1.5 + 0.02i, n =
3, E = 0.1, and kr., = 3, where r,, is the radius of the equal-
volume sphere.
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Table 1. Expansion Coefficients for Model 1

S als azs aas 045 bls b2s
0 1.000000 0.0 0.0 0.943446 0.0 0.0
1 2.449550 0.0 0.0 2.421722 0.0 0.0
2 3.123660 4.180223 4.109855 3.106991 0.012793 —0.065569
3 3.142994 3.913184 3.858398 3.154976 —0.033159 —0.194309
4 2.648942 3.318048 3.245528 2.646169 0.000931 —0.333894
5 1.852605 2.358863 2.311293 1.858816 0.131249 —0.352652
6 1.121077 1.422789 1.378063 1.118224 0.178267 —0.223151
7 0.580167 0.737566 0.707019 0.574649 0.131081 —0.114392
8 0.267070 0.338191 0.320543 0.263145 0.077582 —0.056100
9 0.104690 0.133785 0.123587 0.101423 0.041087 —0.024463
10 0.035834 0.045959 0.040628 0.033490 0.017860 —0.008191
11 0.010102 0.012998 0.010819 0.008953 0.006184 —0.002302
12 0.002459 0.003153 0.002441 0.002035 0.001730 —0.000496
13 0.000502 0.000641 0.000457 0.000384 0.000394 —0.000092
14 0.000089 0.000112 0.000074 0.000062 0.000075 —0.000014
15 0.000013 0.000017 0.000010 0.000009 0.000012 —0.000002
16 0.000002 0.000002 0.000001 0.000001 0.000002 —0.000000
17 0.000000 0.000000 0.000000 0.000000 0.000000 —0.000000
Table 2. Expansion Coefficients for Model 2
s a;’ as’ ag® a4’ by® bo®
0 1.000000 0.0 0.0 0.938406 0.0 0.0
1 2.239020 0.0 0.0 2.243909 0.0 0.0
2 2.626152 3.971995 3.863824 2.602063 —0.029173 —0.128099
3 2.263763 3.057403 3.043574 2.362567 —0.083886 —0.307404
4 1.443307 2.254530 2.111606 1.428102 —0.024388 —0.503761
5 0.642610 0.946340 0.907134 0.667351 0.253410 —0.349050
6 0.246465 0.386070 0.329076 0.230343 0.145396 —0.071618
7 0.058742 0.091230 0.070889 0.050131 0.046878 —0.012777
8 0.010306 0.015634 0.010531 0.007648 0.009644 —0.001458
9 0.001385 0.002043 0.001170 0.000874 0.001409 —0.000118
10 0.000148 0.000213 0.000103 0.000079 0.000158 —0.000007
11 0.000013 0.000018 0.000007 0.000006 0.000014 —0.000000
12 0.000001 0.000001 0.000000 0.000000 0.000001 —0.000000
13 0.000000 0.000000 0.000000 0.000000 0.000000 —0.000000
In Tables 1 and 2 computed values of the expansion coeffi-
cients a5, ..., by’ are given. In Tables 3 and 4 these coeffi-

cients are used to compute the elements of the correspond-
ing scattering matrices for a number of scattering angles.
The computed values of the efficiency factors for extinction,
Qexi, for scattering, Qsca, and for absorption, Qaps, as well as
the single scattering albedo w and the asymmetry parameter
of the phase function (cos ), are presented in Table 5 and
are given by

Qext = Cext/s’ (53)

Qyca = Coca/S, (5.4)

Qabs = Qext - Qscar (5.5)

w= Csca/cext’ (56)

(cos 8) =Y, j " d(cos B)a, (B)cos 6 = a,'/3, 5.7)
-1

where S = 71,2 is the geometrical cross section of the equal-
volume sphere. Extinction cross sections C.y; and scatter-
ing cross sections Cy, were computed by using Egs. (3.23)
and (4.37).
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Table 6 presents the results of timing tests for the two
models, illustrating the speed of this method. In this table
tr is the time for computing the T matrix of an axially
symmetric scatterer with respect to its natural reference
frame [step (1)], t, is the time for computing the expansion
coefficients a5, . . . , by® [steps (2)—(7)], and tr is the time for
computing the elements of the scattering matrix FS for one
value of the scattering angle. All the times are in seconds on
an ES 1061 computer. Also, in Table 6 the computational
parameters nyq, and Ng are the highest n value in the expan-
sions (3.1) and (3.2) and the number of Gaussian quadrature
points used in computing surface integrals, respectively (see,
e.g., Secs. V and VI of Ref. 38).

It is seen from Table 6 that the computer times for calcu-
lating the expansion coefficients are roughly equal to those

Table 3. Elements of the Scattering Matrix for

Model 1

/] a; as as ay by by

0° 16.3398 16.2871 16.2871 16.2345 0.0 0.0
30° 4.9774 4.9449 4.9043 4.8938 —0.2142 0.5491
60° 0.2987 0.2835 0.2156 0.2257 0.0976 0.0596
90° 0.1459  0.1220 0.0755 0.0970 -—0.0471 -0.0340
120° 0.0621 0.0356 0.0027 0.0272 -0.0095 0.0103
150° 0.0326 0.0244 -—0.0197 -0.0132 0.0024 —0.0058

180° 0.0585 0.0329 -—0.0329 -—0.0074 0.0 0.0

Table 4. Elements of the Scattering Matrix for

Model 2

0 a; as as ay by by

0° 10.5319 10.5317 10.5317 10.5315 0.0 0.0
30° 5.0859 5.0835 5.0522 5.0502 —0.1765 0.5337
60° 0.5330 0.5295 0.4353 0.4335 0.1626 0.2424
90° 0.1539  0.1520 0.1029 0.1030 —0.0357 —0.0982
120° 0.1338 0.1325 0.1150 0.1150 -—0.0268 0.0501
150° 0.0731 0.0722 -—0.0310 -—0.0314 0.0600 -—0.0011

180° 0.1208 0.1195 -—0.1195 -—0.1182 0.0 0.0

Table 5. Computed Values of Extinction Efficiency
Factor Q.x;, Scattering Efficiency Factor Q.,,
Absorption Efficiency Factor @, Albedo for Single
Scattering w, and Asymmetry Parameter of the Phase
Function (cos 0)

Model Qext Qscn Qabs w (cos @ >
1 3.28535 2.29028 0.99507 0.69712 0.81652
2 3.31029 3.05078 0.25951 0.92161 0.74634

Table 6. Computer Times for Calculating the T(A)
Matrix, t7, the Expansion Coefficients, t,, and the
Elements of the Scattering Matrix for One Value of
the Scattering Angle tz°

Computational

_Parameters

Model tr ta tr Nmax Ng
1 35.38 38.81 0.0081 16 50

2 68.96 44.77 0.0071 17 50

2 Times are in seconds on an ES 1061 computer.
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for calculating the matrices T/(A) for the homogeneous axial-
ly symmetric scatterers. As was noted above, the time ¢ is
the minimum computer time for any computations based on
the T-matrix approach. Thus, by using the method pro-
posed to compute the expansion coefficients for randomly
oriented scatterers, we only double this minimum time.
Also, tr < t7 and tr < t,; therefore the computation of the
elements of the scattering matrix even for a very large num-
ber of scattering angles (say, 1000 or so) requires only a small
additional computer time.

C. Accuracy Tests
For the examination of the accuracy of this computer code,
several test computations have been performed:

(1) This method was used to compute the expansion
coefficients for homogeneous spherical particles, and the
results obtained were compared with those obtained with
the Domke method.

(2) These computations for randomly oriented homoge-
neous spheroids were compared with those of de Haan.?®* De
Haan has used the solution by Asano and Yamamoto for
spheroidal scatterers,®® as modified by Schaefer,5! and a
method of numerical angle integrations to compute the ex-
pansion coefficients for randomly oriented homogeneous
prolate spheroids (m, = 1.55 + 0.01i, a/b = 0.2499998, kb =
10.07937) and oblate spheroids (m, = 1.53 + 0.006i, a/b =
1.999987, ka = 3). The numerical procedure used is exten-
sively described in Ref. 58 and is completely independent of
this one, thus providing an excellent test.

(3) Some general inequalities,® which are to be satisfied
by the expansion coefficients, were used for checking pur-
poses.

In all the cases considered, an excellent agreement [to six
decimal places in case (2)] was found.

6. DISCUSSION AND CONCLUSIONS

As was pointed out in Section 1, the expansion coefficients
form a convenient and co=cise means of representing scat-
tering matrices of macroscopically isotropic scattering me-
dia. Apparently, the simplest (but not the most efficient)
way to compute the expansion coefficients is to use the
method of numerical angle integrations in expression (2.21)
and the formula [cf. Egs. (2.15) and (2.16)]

FC() =

2% L 27
1 ] da f dB sin 8 j dyZC(6, 0; 0, 0; aB)
2‘ll'Csca 0 0 0

(6.1)

(see, e.g., Ref. 58). Nevertheless, I have shown in this paper
that the T-matrix approach can be successfully used to eval-
uate all the integrals in Egs. (2.21) and (6.1) analytically, the
final expressions being rather simple and well suited for
efficient computer calculations. Moreover, the method de-
veloped is numerically accurate in the above-mentioned
gense: if the computational parameter n,., has been cho-
sen, the T-matrix elements with n < n,,,, are assumed to be
determined precisely, and the T-matrix elements with n >
Nmax are assumed to be zero, then the accuracy of computing
the expansion coefficients is limited only by round-off errors
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and does not depend on any additional computational pa-
rameter.

I recommend the use of this method both in multiple-
scattering calculations, when only the expansion coefficients
themselves have to be determined, and in single-scattering
calculations, when the elements of the scattering matrix are
required for a representative set of scattering angles. Inthe
case of single-scattering calculations, the method of numeri-
cal angle integrations in Eq. (6.1) was frequently used in the
literature.35:37:38,58,6263  Nevertheless, this method, which
implies computation of the expansion coefficients before
computation of the elements of the scattering matrix, seems
to be much faster. For example, Barber et al.,3> who used
the method of numerical angle integrations and performed
their calculations on a microcomputer, reported that, for a
prolate-spheroidal particle with a/b = 0.5, kb = 5.6, and m, =
1.5, the matrix T(A) was generated in 23 min, and then an
overnight run was required to compute the orientationally
averaged scattering matrix for 37 scattering angles. Inother
words, the time for computing the scattering matrix for 37
scattering angles was roughly 20 times that for computing
the matrix T(A). For the same case but on the computer
that I used, the matrix T(A) was generated in 19 s, the
corresponding expansion coefficients were computed in 14 s,
and then the orientationally averaged scattering matrix for
37 scattering angles was computed in 0.36 s. Thus the over-
all time for computing the scattering matrix for 37 scattering
angles was even less than the time for computing the matrix
T(4).

Also, direct comparisons of the two methods were made by
solving identical scattering problems on the same ES 1061
computer. For this purpose, I used the computer program
by Paramonov and Lopatin,® which is based on the
T-matrix approach and the method of numerical angle inte-
grations and, like this program, is written in standard
FORTRAN. For the two models considered (see Subsection
5.B), I found that, in computing the orientationally averaged
scattering matrix for 37 scattering angles, this program was
roughly 20 times faster than that of Paramonov and Lopatin.

Finally, note that recently Schiffert>% used the idea of
taking an ensemble average analytically in order to compute
the expansion coefficients for an ensemble of randomly ori-
ented irregular particles. As a mathematical basis, Schiffer
utilized the so-called perturbation approach,®” which can be
applied only to nearly spherically shaped particles. Schif-
fer’s final equations have simple and transparent structure
but seem not to be well suited for efficient computer calcula-
tions, since a fivefold summation has to be evaluated to
compute each of the expansion coefficients. Unlike Schif-
fer’s equations, the maximum order of summation in these
formulas is only three.

APPENDIX A: GENERALIZED SPHERICAL
FUNCTIONS

For integers s, p, and g, the generalized spherical functions
are defined as*6

Popf(@) = Apg’(1 — x) P01 4 2)~(P+0)2

e
dx*

[@ = x)*"P(1 + x)**?] for s =s, = max(pl,lgl)
(A1)
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qu“‘(x) =0 for s<s,, (A2)
with
s - (C1TRETP (s +q)! ]1/2 A3
Ara > [(s pls+pie-ol] - Y
Note that
Py’(x) = P(x), (A4)
s (s—q)!
o =i G| o (45)
where Py(x) are Legendre polynomials given by
Py(x) = por E (x?=-1) (A6)

and P,9(x) are associated Legendre functions given by

( 1) ( 2)q/2 d

Pi(x) = (x - 1) (AT)

Important properties of the generalized spherical func-
tions are the symmetry relation
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with
P, \(x) =0, (A11)
() = (—i)"’“"[ (2s.)! ]1/2
Poa ) == | To = il + o

X (1= x)P=92(1 + x)P+al2. (A12)

APPENDIX B: CLEBSCH-GORDAN
COEFFICIENTS

To calculate the Clebsch-Gordan coefficients appearing in
Eqgs. (4.17), (4.18), and (4.23)-(4.27), we may use the follow-
ing formulas, which are given in a book by Varshalovich et
al.%5 or can be easily derived from equations therein.

For n’ < N = max(|n — ny, Im’]),

C P =0, (B1)

nm n;m’—m

Forn’ > N,

Cnm n,m’—mnm = [(n/ + m’)(n’ —_

m'n(n+1) + m'ni(n, +1)

4n”%(2n’ +1)(2n" - 1) 12
m)n,—n+n)n—-n,+n)n+n,—-n"+1)(n+n,+n +1)

{(2m -m)n'(n —-1) -
X

2n’(n’ - 1)

nmnm'—m

_ nW-m-1)m+m =10, —n+n-)n-—n +n' —1)(n+n,—n+2)(n+n +n)]2 o B
4w’ — 1@’ = B)(an — ) nm = } ®2

For n’ = N, the following particular cases have to be consid-
ered:

(1) Forln—ni =|mland n = n,,

n+m)n-

m)!(2n,)!(2n — 2n,; + 1)!

n—nm’ _ . 1\ntm'+m
Cnmn,m’—m _( 1)

@n+Dn,+m' —m)n,—m' +m)l(n—n, + m)(n—n, —

1/2
m’)!] - (B9

(2) Forln — ny4l = |m’| and n < ny, we use the formula

n—nm’ _ C n,—nm’
= Ynm'-mnm ’

C

nmnm'—m

together with Eq. (B3).
(3) Forln —nyl <|m’/l and m’ = 0,

@em' + D!n+n, -

(B4)

m)l(n + m)i(n, + m’ — m)!

Cnm n,m’—mn,m, = (_1)n+m [

m+n +m'+1)(n—n,+m)(n,—n+m)n-

1/2
'] . (B5)

m)i(n; — m’ + m)!

P, (x) = P'(x) = P_,_j(x) = (-1)"*[P,*(x)]*  (A8)

and the orthogonality relation

+1
s s = 2
| 4Py @y @) = 52 (. (A9)

In practice the generalized spherical functions may be
found from the recurrence relation46

sl(s + 1) = pA"?[(s + 1)* = ¢%]?P, ()
- pq]P,(x)
= (s + 1)(s* = p)VA(s* - )P, !(x), (A10)

=(2s+ 1)[s(s + 1)x

(4) Forln — ny4l <Im’| and m’ < 0, we use the formula

= (_1)n+n,+m’C _ _ I_,n»_mr’ (BG)

n—mn,m-m

Commmtm ™™™

nm n,m’'—-m

together with Eq. (B5).
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